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Abstract
We discuss both the UV and IR origins of the one-loop triangle gauge anomalies
for noncommutative non-Abelian chiral gauge theories with fundamental,
adjoint and bi-fundamental fermions for U(N) groups. We find that gauge
anomalies only originate from planar triangle diagrams, the nonplanar triangle
contributions giving rise to no breaking of the Ward identities. Generally
speaking, theories with fundamental and bi-fundamental chiral matter are
anomalous. Theories with only adjoint chiral fermions are anomaly free.

PACS numbers: 11.15.Bt, 02.40.Gh, 11.30.Rd

1. Introduction

Let spacetime be noncommutative [1] Minkowski and let ψ denote a fermion chirally coupled
to a U(N) gauge field Aµ. Let Aµ be an N×N matrix which transforms under an infinitesimal
gauge transformation as follows:(

δωAµ

)i
j

= ∂µω
i
j − iAi

µk � ω
k
j + iωi

k � A
k
µ j (1)

where ωi
j = ω

∗ j
i , i, j = 1, . . . , N , are the infinitesimal gauge transformation parameters and

the symbol � represents the Moyal product of functions on Minkowski spacetime. The Moyal
product is defined thus:

(f � g)(x) = e
i
2 θ

µν∂uµ∂
w
ν f (u)g(w)|u=x,w=x

where θµν is an antisymmetric real matrix of either magnetic type or light-like type [2].
Following [3], we introduce three basic right-handed chiral gauge transformation laws for

the fermion field

(δωψ)i = iωi
j � P+ ψ

j and (δωψ̄)i = −iψ̄k � ω
k
iP− (2)

(δωψ)j = −iP+ ψi � ω
i
j and (δωψ̄)k = iωk

i � ψ̄
i P− (3)
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and
(δωψ)ij = i

(
ωi

k � P+ ψ
k
j − P+ ψ

i
k � ω

k
j

)
and

(δωψ̄)ki = −i
(
ψ̄k

j � ω
j

i P− − ωk
j � ψ̄

j

i P−
)
.

(4)

As usual, P+ = 1
2 (1 + γ5). The fermions transforming under gauge transformations as in

equations (2)–(4) will be called (right-handed) fundamental, (right-handed) anti-fundamental
and (right-handed) adjoint fermions, respectively.

The U(N) chiral gauge theories with the fermion ψ transforming as in equations (2)–(4)
are governed, respectively, by the following classical actions:

S =
∫

d4x ψ̄i � (i∂/ψ
i + Ai

µ j � γ
µP+ψ

j) (5)

S =
∫

d4x ψ̄i � (i∂/ψi − γµP+ψj � A
j

µ i) (6)

and

S =
∫

d4x ψ̄k
i � (i∂/ψ

i
k + Ai

µ j � γ
µP+ψ

j

k − γ µP+ψ
i
j � A

j

µk). (7)

Each action is invariant under the corresponding chiral gauge transformations; these
transformations are displayed in equations (1)–(4).

The effective action, �[A], which arises upon integrating out the fermionic degrees of
freedom is formally given by

ei�[A] =
∫

dψ dψ̄ eiS[A,ψ,ψ̄] (8)

with S[A,ψ, ψ̄] given by any of the classical actions in equations (5)–(7). The path
integral above is formally invariant under the corresponding chiral gauge transformations—see
equations (1)–(4), which leads, formally, to the gauge invariance of �[A]. Yet, it has been
shown in [4] that once the path integral is properly defined á la Berezin the effective action is
no longer gauge invariant for fermions transforming as in equations (2) and (3), but rather the
following anomaly equation holds:

δθ�[A] = ± 1

24π2
Tr

∫
d4x εµ1µ2µ3µ4 θ ∂µ1

[
Aµ2 � ∂µ3Aµ4 − i

2
Aµ2 � Aµ3 � Aµ4

]
(9)

where the overall + and − signs are for right-handed fundamental and right-handed anti-
fundamental fermions, respectively. This equation can also be obtained by using standard
diagrammatic techniques. One begins by working out the anomaly equation for the three-
point contribution—the famous triangle diagrams—to �[A] (the latter has been defined in
equation (8)), and then one uses the Wess–Zumino consistency condition [5] to obtain the
complete equation. Agreement with equation (9) demands that this triangle anomaly reads

p
µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2)

eps = ∓ 1

24π2
εµ1µ2αβ p

α
1p

β

2

×(Tr {T a1 , T a2} T a3 cos 1
2θ(p1, p2) − i Tr [T a1 , T a2 ]T a3 sin 1

2θ(p1, p2)) (10)

where �a1a2a3
µ1µ2µ3

(p1, p2) gives the Fourier transform,

�a1a2a3
µ1µ2µ3

(p1, p2, p3) = (2π)4δ(p1 + p2 + p3) �
a1a2a3
µ1µ2µ3

(p1, p2)

of the three-point function

δ3i�[A]

δA
a1
µ1(x1)δA

a2
µ2(x2)δA

a3
µ3(x3)

∣∣∣∣
A=0

=
∫ 3∏

i=1

d4pi

(2π)4
eipix �a1a2a3

µ1µ2µ3
(p1, p2, p3) (11)
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and the superscript eps stands for the contribution to this Green function which carries the Levi-
Civita pseudotensor. The indices a1, a2 and a3 run over the generators of the gauge group. The
symbol θ(p1, p2) is a shorthand for p1µ θ

µν p2 ν . Equation (10) leads clearly to the conclusion
that the triangle contribution on noncommutative Minkowski for (anti-) fundamental chiral
fermions is anomaly free if, and only if,

Tr T a1T a2T a3 = 0

its ordinary counterpart being Tr {T a1 , T a2}T a3 = 0.
We can also have chiral gauge theories with bi-fundamental chiral fermionsψi

R j = P+ψ
i
j ,

i = 1, . . . , N and j = 1, . . . ,M [3]. Now the fermion couples to a U(N) gauge field, say Aµ,
and a U(M) gauge field, say Bµ, the former being an N ×N matrix and the latter an M ×M

matrix. The classical action for this theory reads

S =
∫

d4x ψ̄k
i � (i∂/ψ

i
k + Ai

µ j � γ
µP+ψ

j

k − γ µP+ψ
i
j � B

j

µk). (12)

This action is invariant under the following infinitesimal gauge transformations:

(δ(ω,χ)ψ)ij = i(ωi
j � P+ψ

j

i − P+ψ
i
j � χ

j

i )

(δ(ω,χ)ψ̄)ki = −i(ψ̄k
j � ω

j

iP− − χk
j � ψ̄

j

iP−)

(δωAµ)
i
j = ∂µω

i
j − iAi

µk � ω
k
j + iωi

k � A
k
µ j

(δχBµ)
i
j = ∂µχ

i
j − iBi

µk � χ
k
j + iχi

k � B
k
µ j

where ωi
j = ω

∗ j
i , i, j = 1, . . . , N , and χi

j = χ
∗ j

i , i, j = 1, . . . ,M , are the infinitesimal
gauge transformation parameters.

The effective action, �[A,B], that one obtains by integrating over the fermionic degrees
of freedom formally reads thus:

ei�[A,B] =
∫

dψ dψ̄ eiS[A,B,ψ,ψ̄] (13)

with S[A,B,ψ, ψ̄] given in equation (12). We shall see that in general there are triangle gauge
anomalies jeopardizing the formal gauge invariance of �[A,B].

It is well known that the chiral gauge anomaly on ordinary Minkowski spacetime can be
understood either as a short-distance phenomenon (UV effect) [6] or as an IR effect (large-
distance phenomenon) [7]. The purpose of this paper is to show that non-Abelian chiral
anomalies on noncommutative Minkowski spacetime can also be explained as either a UV
effect or an IR phenomenon. Recall that if the chiral fermions of the theory are either adjoint
or bi-fundamental, there are non-planar contributions to the three-point function of the effective
action (�adj[A] and �[A,B] in equations (8) and (13)) and one wonders whether these non-
planar contributions may give rise to some gauge anomaly due to its noncommutative IR
structure; this structure being a consequence of their being regularized in the UV by the
appropriate Moyal exponentials [8]. We shall show in this paper that, at least for the theories
we have studied, there are no anomalous contributions from the nonplanar triangle diagrams:
gauge anomalies—if they exist—are due to planar triangle diagrams. We have assumed that,
as in the ordinary case, true anomalies always involve the Levi-Civita pseudotensor. Standard
arguments [9] can be put forward to support this assumption.

The layout of this paper is as follows. Section 2 is devoted to the analysis of the anomaly
equation—equation (10)—as a UV effect. In this section we shall also show that the chiral
gauge theory whose classical action is given in equation (7) is anomaly free. We close the
section by computing the triangle gauge anomalies for a chiral theory with a bi-fundamental
right-handed fermion and conclude that they only originate from the planar contribution to its
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p

iαβ j

aµ

iαβ j

p2
p1

Figure 1. Feynmann rules.

effective action; the nonplanar part being thus anomaly free. In section 3 we shall exhibit the
IR origin of the non-Abelian chiral anomalies we have worked out in section 2. We include
an appendix with the relevant Feynman integrals.

2. The UV origin of non-Abelian chiral gauge anomalies

Let us begin with the chiral theory whose action is given by equation (5). The UV character of
equation (10) is made apparent by computing its lhs with the help of a regularization method.
We shall use dimensional regularization as defined by Breitenlohner and Maison [10] (see [11]
for an alternative), i.e. with the definition of γ5 given by ’t Hooft and Veltman, and take the
following classical action in the ‘d-dimensional’ space of dimensional regularization (see [12]
and references therein):

S =
∫

ddx ψ̄i � (i∂/ψ
i + Aa

µT
a i

j γ̄
µP+ � ψ

j ).

Here, T a i
j = T

∗ a j
i . The object denoted by the symbol γ̄ µ and the other objects in the

algebra of ‘d-dimensional’ covariants are defined as in section 2 of [12]. The ‘d-dimensional’
counterpart of θµν is defined as an object which satisfies

θµν = −θνµ ĝµρθ
ρν = 0 pµ θ

µρηρσ θ
σν pν � 0 ∀pµ.

The Feynman rules needed to reproduce our computations are given in figure 1.
Let us define the dimensionally regularized counterpart of the lhs of equation (10):

,a1a2a3
µ1µ2

(p1, p2; d) = p
µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2; d)eps.

At the one-loop level ,a1a2a3
µ1µ2

(p1, p2; d) is given by the sum of the contributions from the
two triangle diagrams in figure 2. This sum reads

,a1a2a3
µ1µ2

(p1, p2; d) = e− i
2 θ(p1,p2) Tr T a1T a2T a3 ,(1)

µ1µ2
(p1, p2; d)

+e
i
2 θ(p1,p2) Tr T a2T a1T a3 ,(2)

µ1µ2
(p1, p2; d) (14)

with

,(1)
µ1µ2

(p1, p2; d) = −
∫

ddq

(2π)d
tr eps

{
(q/+ p/1) γ̄µ1P+ q/γ̄µ2P+ (q/− p/2)(p̄/1+ p̄/2)P+

}
(q2 + i0+)((q + p1)2 + i0+)((q − p2)2 + i0+)

and

,(2)
µ1µ2

(p1, p2; d) = −
∫

ddq

(2π)d
tr eps

{
(q/+ p/2) γ̄µ2P+ q/γ̄µ1P+ (q/− p/1)(p̄/1+ p̄/2)P+

}
(q2 + i0+)((q + p2)2 + i0+)((q − p1)2 + i0+)

. (15)
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p1

1
µ

1
a

p3

3
µ

3
a

2
µ

2
a

p2

qq

p2

2
µ

2
a

p3

3
µ

3
a

1
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1
a

p1

qq

(a) (b)

Figure 2. Triangle diagrams.

In the previous equation tr eps shows that only contributions involving the Levi-Civita symbol
εµ1µ2µ3µ4 are kept upon computing the trace over the gammas.

Now, the Feynman diagrams in figure 2 are planar; hence, it can be readily seen [13] that
their noncommutative character is completely embodied (see equation (14)) in the overall phase
factors e− i

2 θ(p1,p2) and e
i
2 θ(p1,p2). Then, it does not come as a surprise that equation (10) holds,

for the Feynman integrals in equation (15) are the standard integrals whose UV behaviour
gives rise to the non-Abelian chiral anomaly on commutative Minkowski space.

Taking into account that P+γ̂µγ̄νP+ = 0 and performing some standard manipulations one
shows that

,(1)
µ1µ2

(p1, p2; d)

= − 1

2

∫
ddq

(2π)d
tr

{
γ̄αγ̄µ1 γ̄β γ̄µ2γ5

}
p̄α

1 (q̄ + p̄2)
β q̂2

(q2 + i0+)((q + p2)2 + i0+)((q + p1 + p2)2 + i0+)

−1

2

∫
ddq

(2π)d
tr

{
γ̄µ1 γ̄αγ̄µ2 γ̄βγ5

}
(q̄ + p̄1)

αp̄
β

2 q̂2

(q2 + i0+)((q + p1)2 + i0+)((q + p1 + p2)2 + i0+)
. (16)

Notice that the integrand of the integrals in equation (16) formally vanishes in the limit
d → 4, since it contains the evanescent term q̂2. However, the limit d → 4 of these
integrals although finite is not zero. Indeed, if we take into account that q̂2 = qαqβĝαβ ,
we readily see that what we are facing is the computation of integrals which are UV divergent
by power-counting at d = 4 and which will develop a simple pole at d = 4 when computed
in dimensional regularization (notice that the integrals at hand are IR finite by power-counting
at nonexceptional momenta). This pole will be cancelled at the end of the day by the
evanescent (order d − 4) contribution from the contraction with ĝαβ , yielding a polynomial
in the external momenta (short-distance operator) as the value for ,(1)

µ1µ2
(p1, p2; d) at d = 4.

We have thus explained the non-Abelian chiral anomaly of equation (10) as a UV effect.
Indeed, a little computation shows that the integrals in equation (16) yield the following
result:

,(1)
µ1µ2

(p1, p2; d = 4) = − 1

24π2
εµ1µ2αβ p

α
1p

β

2 . (17)

The reader may find the following integrals useful:
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ddq

(2π)d
q̂2

q2 (q + p2)2 (q + p1 + p2)2
= − i

16π2

(
1

2

)
+ O(d − 4)

∫
ddq

(2π)d
q̂2 q̄α

q2 (q + p2)2 (q + p1 + p2)2
= i

16π2

(
1

6

)
(p̄1 + 2p̄2)

α + O(d − 4).

It is clear that for ,(2)
µ1µ2

(p1, p2; d) in equation (15) one will obtain the following finite
answer:

,(2)
µ1µ2

(p1, p2; d = 4) = − 1

24π2
εµ1µ2αβ p

α
1p

β

2 . (18)

Finally, if we substitute this result and equation (17) in (14), we shall recover the one-loop
triangle anomaly of equation (10).

A completely similar analysis can be done for the chiral theory defined by the action in
equation (6). Let us move on and compute p

µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2)

eps for the theory with adjoint
fermionic matter. The classical action of this theory is given in equation (7). The Ward identity
that should hold if the gauge symmetry of the classical theory is a symmetry of the quantum
theory reads∫

d4x ω
i1
i2
� ∂µ

δ�[A]

δA
i1
µ i2

= i
∫

d4x ω
i1
i2
�

[
A

i2
µ i3

�
δ�[A]

δA
i1
µ i3

− δ�[A]

δA
i3
µ i2

� A
i3
µ i1

]
. (19)

It can be readily shown that the previous equation holds by writing the classical action of the
theory in terms of Majorana fermions with gamma matrices in the Majorana representation.
Indeed, in so doing the coupling to the gauge field is vector-like so no gauge anomaly occurs,
and yet we shall carry out explicit computations for the classical action written as in equation (7),
since the intermediate results we shall obtain will be useful when we consider bi-fundamental
chiral matter coupled to gauge fields.

For pµ3
3 �a1a2a3

µ1µ2µ3
(p1, p2)

eps, equation (19) boils down to

p
µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2)

eps = 0.

To obtain this equation it is necessary to take into account that the two-point contribution to
�[A] has no pseudotensor contribution.

The dimensional regularization counterpart of the action in equation (7) will have for us
the following expression:

S =
∫

ddx ψ̄k
i � (i∂/ψ

i
k + Ai

µ j � γ̄
µP+ψ

j

k − γ̄ µP+ψ
i
j � A

j

µk)

with the same notation as at the beginning of this section. Instead of deriving Feynman
rules from this action and computing p

µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2)

eps from the corresponding triangle
diagrams in figure 2, we shall follow an alternative procedure, which will supply a more
thorough understanding of the final answer. Let us introduce first the following chiral current
in the ‘d-dimensional’ space of dimensional regularization:

jaµ(x) ≡ i
δS[A]

Aa
µ(x)

≡ ja −
µ (x) + ja +

µ (x) (20)

where

ja −
µ (x) = −iψj

k β � ψ̄k
i α(x) T

a i
j (γ̄

µP+)αβ

and

ja +
µ (x) = −i ψ̄k

i α � ψ
i
j β(x)T

a j

k (γ̄
µP+)αβ. (21)
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Let ja (·)µ (p) be given by

ja (·)µ (x) =
∫

d4p

(4π)4
eipx ja (·)µ (p).

Then, the three-point function (equation (11)) in momentum space reads

�a1a2a3
µ1µ2µ3

(p1, p2, p3) = 〈ja1
µ1
(p1) j

a2
µ2
(p2) j

a3
µ3
(p3)〉con

where the subscript ‘con’ refers to the connected part of the corresponding Green function.
Throughout this paper, vacuum expectation values are computed with the free fermionic action.
Taking into account equation (20), we obtain

�a1a2a3
µ1µ2µ3

(p1, p2, p3) = �a1a2a3
µ1µ2µ3

(p1, p2, p3)P + �a1a2a3
µ1µ2µ3

(p1, p2, p3)NP

where

�a1a2a3
µ1µ2µ3

(p1, p2, p3)P = 〈ja1 −
µ1
(p1) j

a2 −
µ2
(p2) j

a3 −
µ3
(p3)〉con + 〈ja1 +

µ1
(p1) j

a2 +
µ2
(p2) j

a3 +
µ3
(p3)〉con

(22)

and

�a1a2a3
µ1µ2µ3

(p1, p2, p3)NP

= 〈ja1 −
µ1
(p1)j

a2 −
µ2
(p2)j

a3 +
µ3
(p3)〉con + 〈ja1 +

µ1
(p1)j

a2 +
µ2
(p2)j

a3 −
µ3
(p3)〉con

×〈ja1 −
µ1
(p1)j

a2 +
µ2
(p2)j

a3 −
µ3
(p3)〉con + 〈ja1 +

µ1
(p1)j

a2 −
µ2
(p2)j

a3 +
µ3
(p3)〉con

×〈ja1 +
µ1
(p1)j

a2 −
µ2
(p2)j

a3 −
µ3
(p3)〉con + 〈ja1 −

µ1
(p1)j

a2 +
µ2
(p2)j

a3 +
µ3
(p3)〉con. (23)

The subscripts ‘P’ and ‘NP’ refer, respectively, to the planar and nonplanar parts of
�a1a2a3
µ1µ2µ3

(p1, p2, p3). The reader may easily realize that only when the three currents in the
correlation function carry the same superscript, − or +, there is no Moyal exponential carrying
the loop momenta. Notice that each correlation function of the type 〈j j j〉con above can be
interpreted as the sum of two triangle diagrams with vertices given by the currents of the
former.

Now, taking into account equation (21), it can be easily shown that the the Green functions
contributing to the rhs of equation (22) satisfy

p
µ3
3 〈ja1 −

µ1
(p1) j

a2 −
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con = (2π)4δ(p1 + p2 + p3)N

×e− i
2 θ(p1,p2) Tr T a1T a2T a3 ,(1)

µ1µ2
(p1, p2; d)

+e
i
2 θ(p1,p2) Tr T a2T a1T a3 ,(2)

µ1µ2
(p1, p2; d)

p
µ3
3 〈ja1 +

µ1
(p1) j

a2 +
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = −(2π)4δ(p1 + p2 + p3)N

×e− i
2 θ(p1,p2) Tr T a1T a2T a3 ,(2)

µ1µ2
(p1, p2; d)

+e
i
2 θ(p1,p2) Tr T a2T a1T a3 ,(1)

µ1µ2
(p1, p2; d)

(24)

where ,(1)
µ1µ2

(p1, p2; d) and ,(2)
µ1µ2

(p1, p2; d) are given in equation (15) and the superscript
‘eps’ indicates that one should keep only contributions involving the Levi-Civita symbol. Now,
substituting equations (17) and (18) into (24), one obtains that the following equations hold at
d = 4:

p
µ3
3 〈ja1 −

µ1
(p1) j

a2 −
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con = −(2π)4δ(p1 + p2 + p3)
1

24π2
εµ1µ2αβ p

α
1p

β

2

×N(Tr {T a1 , T a2} T a3 cos 1
2θ(p1, p2) − i Tr [T a1 , T a2 ]T a3 sin 1

2θ(p1, p2))

p
µ3
3 〈ja1 +

µ1
(p1) j

a2 +
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = (2π)4δ(p1 + p2 + p3)
1

24π2
εµ1µ2αβ p

α
1p

β

2

×N(Tr {T a1 , T a2} T a3 cos 1
2θ(p1, p2) + i Tr [T a1 , T a2 ]T a3 sin 1

2θ(p1, p2)).
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Hence, each correlation function of currents contributing to the rhs of equation (22) yields an
anomalous term, but its sum, i.e. the planar part of �a1a2a3

µ1µ2µ3
(p1, p2, p3)

eps, carries no anomaly:

p
µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2, p3)

eps
P = 0.

The reader should notice that the result we have just derived can be understood as follows:
the sum of the two triangle diagrams contributing to 〈ja1 −

µ1
(p1) j

a2 −
µ2
(p2) j

a3 −
µ3
(p3)〉con yields a

chiral anomaly opposite to the chiral anomaly from the sum of the two triangle diagrams
contributing to 〈ja1 +

µ1
(p1) j

a2 +
µ2
(p2) j

a3 +
µ3
(p3)〉con; i.e., the contribution from the fermionic

modes in the fundamental representation of U(N) moving around the loop cancels the
contribution furnished by the fermionic modes in the anti-fundamental representation of U(N)

propagating along the loop: recall that the adjoint representation of U(N) can be understood
as the product of its fundamental and anti-fundamental representations.

Let us now show that there is no anomaly in the pseudotensor part of the nonplanar
contribution given in equation (23). Here, of course, we shall meet only integrals which give
UV finite results at d = 4—since the Moyal exponential regulates them in the UV—but which
develop, as a consequence of the UV/IR connection in noncommutative field theories, IR
divergences as one approaches the noncommutative IR region p̃ = 0. Let us see whether
or not they carry any anomaly. For the first three-current correlation function on the rhs of
equation (23), one obtains the following intermediate results at d = 4:

p
µ3
3 〈ja1 −

µ1
(p1) j

a2 −
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = (2π)4δ(p1 + p2 + p3)Tr(T a1T a2)Tr T a3

×[
e

i
2 θ(p1,p2),(1)−

µ1µ2
(p1, p2|p̃3) + e− i

2 θ(p1,p2),(2)−
µ1µ2

(p1, p2|p̃3)
]

(25)

with

,(1)−
µ1µ2

(p1, p2|p̃3) =
∫

d4q

(2π)4
e−iθ(q,p3)

tr eps
{
(q/+ p/1) γµ1P+ q/γµ2P+ (q/− p/2)(p/1+ p/2)P+

}
(q2 + i0+)((q + p1)2 + i0+)((q − p2)2 + i0+)

and

,(2)−
µ1µ2

(p1, p2|p̃3) =
∫

d4q

(2π)4
e−iθ(q,p3)

tr eps
{
(q/+ p/2) γµ2P+ q/γµ1P+ (q/− p/1)(p/1+ p/2)P+

}
(q2 + i0+)((q + p2)2 + i0+)((q − p1)2 + i0+)

.

In the previous integralsp1 +p2 +p3 = 0. Notice the characteristic Moyal factor, e−iθ(q,p3), of a
nonplanar contribution. The integrals are well defined provided we are off the noncommutative
IR region defined by p̃2

3 = 0. Let us show now that

e
i
2 θ(p1,p2),(1)−

µ1µ2
(p1, p2|p̃3) + e− i

2 θ(p1,p2),(2)−
µ1µ2

(p1, p2|p̃3) = 0. (26)

If we change variables q → q+p2 and q → q+p1 in ,(1)−
µ1µ2

(p1, p2|p̃3) and ,(2)−
µ1µ2

(p1, p2|p̃3),
respectively, and use the cyclicity of the trace, we obtain

e
i
2 θ(p1,p2),(1)−

µ1µ2
(p1, p2|p̃3) + e− i

2 θ(p1,p2),(2)−
µ1µ2

(p1, p2|p̃3)

= e− i
2 θ(p1,p2)

∫
d4q

(2π)4
e−iθ(q,p3)

× tr eps

{
1

q/
(p/1+ p/2)P+

1

q/+ p/1+ p/2
γµ1P+

1

q/+ p/2
γµ2P+

}

+e
i
2 θ(p1,p2)

∫
d4q

(2π)4
e−iθ(q,p3)

× tr eps

{
1

q/
(p/1+ p/2)P+

1

q/+ p/1+ p/2
γµ2P+

1

q/+ p/1
γµ1P+

}
. (27)
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Now, using the equations γµγνP+ = P+γµγν , P 2
+ = P+ and (p/1+p/2)γ5 = −q/γ5 −γ5(q/+p/1+p/2)

one readily casts the rhs of equation (27) into the form

−1

2
e− i

2 θ(p1,p2)

∫
d4q

(2π)4
e−iθ(q,p3)

[
tr

{
γ5

1

q/+ p/1+ p/2
γµ1

1

q/+ p/2
γµ2

}

+ tr

{
1

q/
γ5γµ1

1

q/+ p/2
γµ2

}]

−1

2
e

i
2 θ(p1,p2)

∫
d4q

(2π)4
e−iθ(q,p3)

[
tr

{
γ5

1

q/+ p/1+ p/2
γµ2

1

q/+ p/1
γµ1

}

+ tr

{
1

q/
γ5γµ2

1

q/+ p/1
γµ1

}]
.

(28)

Some Dirac algebra leads, respectively, to the following expressions:

tr

{
γ5

1

q/+ p/1+ p/2
γµ1

1

q/+ p/2
γµ2

}
= − tr

{
1

q/+ p/2
γ5γµ2

1

q/+ p/1+ p/2
γµ1

}

tr

{
γ5

1

q/+ p/1+ p/2
γµ2

1

q/+ p/1
γµ1

}
= − tr

{
1

q/+ p/1
γ5γµ1

1

q/+ p/1+ p/2
γµ2

}
.

(29)

Substituting these equations in equation (28) and performing appropriate momentum shifts,
one easily shows that, in equation (28), the first integral cancels the fourth integral and the
second integral cancels the third one, thus proving that the equation (26) actually holds. We
obtain finally

p
µ3
3 〈ja1 −

µ1
(p1) j

a2 −
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = 0 (30)

a result which is obtained by substituting equation (26) in (25). The same conclusion can
be reached, using completely analogous methods, for the three-current correlation function
〈ja1 +

µ1
(p1)j

a2 +
µ2
(p2)j

a3 −
µ3
(p3)〉con:

p
µ3
3 〈ja1 +

µ1
(p1) j

a2 +
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con = 0. (31)

Things do not work the same way for the remaining Green functions on the rhs of equation (23).
Actually, each three-current correlation function gives a contribution, vanishing the sum of
them all. Let us see this. Some algebra leads to

p
µ3
3 〈ja1 −

µ1
(p1) j

a2 +
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con = (2π)4δ(p1 + p2 + p3)Tr(T a1T a3)Tr T a2

×[
e− i

2 θ(p1,p2),(1)−
µ1µ2

(p1, p2|p̃2) + e
i
2 θ(p1,p2),(2)−

µ1µ2
(p1, p2|p̃2)

]
p
µ3
3 〈ja1 +

µ1
(p1) j

a2 −
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = −(2π)4δ(p1 + p2 + p3)Tr(T a1T a3)Tr T a2

×[
e

i
2 θ(p1,p2),(1)+

µ1µ2
(p1, p2|p̃2) + e− i

2 θ(p1,p2),(2)+
µ1µ2

(p1, p2|p̃2)
]

p
µ3
3 〈ja1 +

µ1
(p1) j

a2 −
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con = (2π)4δ(p1 + p2 + p3)Tr(T a2T a3)Tr T a1

×[
e− i

2 θ(p1,p2),(1)−
µ1µ2

(p1, p2|p̃1) + e
i
2 θ(p1,p2),(2)−

µ1µ2
(p1, p2|p̃1)

]
p
µ3
3 〈ja1 −

µ1
(p1) j

a2 +
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = −(2π)4δ(p1 + p2 + p3)Tr(T a2T a3)Tr T a1

×[
e

i
2 θ(p1,p2),(1)+

µ1µ2
(p1, p2|p̃1) + e− i

2 θ(p1,p2),(2)+
µ1µ2

(p1, p2|p̃1)
]
.

(32)

In this equation, the contributions denoted by ,(1)±
µ1µ2

(p1, p2|p̃i) and ,(2)±
µ1µ2

(p1, p2|p̃i), with
i = 1 and 2, are given by the following integrals:
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,(1)±
µ1µ2

(p1, p2|p̃i) =
∫

d4q

(2π)4
e±iθ(q,pi )

tr eps
{
(q/+ p/1) γµ1P+ q/γµ2P+ (q/− p/2)(p/1+ p/2)P+

}
(q2 + i0+)((q + p1)2 + i0+)((q − p2)2 + i0+)

and

,(2)±
µ1µ2

(p1, p2p̃i) =
∫

d4q

(2π)4
e±iθ(q,pi )

tr eps
{
(q/+ p/2) γµ2P+ q/γµ1P+ (q/− p/1)(p/1+ p/2)P+

}
(q2 + i0+)((q + p2)2 + i0+)((q − p1)2 + i0+)

.

Using the same variety of tricks that led to equation (26), one shows that now

e∓ i
2 θ(p1,p2),(1)∓

µ1µ2
(p1, p2|p̃i) + e± i

2 θ(p1,p2),(2)∓
µ1µ2

(p1, p2|p̃i)

= ∓ 4 sin
1

2
θ(p1, p2) εµ1µ2αβ

∫
d4q

(2π)4
e∓iθ(q,pi )

qαp
β

i

(q2 + i0+)((q + pi)2 + i0+)

(33)

where i = 1 and 2. For the sake of the reader, we shall spell out the computations leading to the
previous equation. Let us change variables q → q + p2 and q → q + p1 in ,(1)∓

µ1µ2
(p1, p2|p̃2)

and ,(2)∓
µ1µ2

(p1, p2|p̃2), respectively, and use the cyclicity of the trace, to obtain

e∓ i
2 θ(p1,p2),(1)∓

µ1µ2
(p1, p2|p̃2) + e± i

2 θ(p1,p2),(2)∓
µ1µ2

(p1, p2|p̃2)

= e∓ i
2 θ(p1,p2)

∫
d4q

(2π)4
e∓iθ(q,p2)

× tr eps

{
1

q/
(p/1+ p/2)P+

1

q/+ p/1+ p/2
γµ1P+

1

q/+ p/2
γµ2P+

}

+e∓ i
2 θ(p1,p2)

∫
d4q

(2π)4
e∓iθ(q,p2)

× tr eps

{
1

q/
(p/1+ p/2)P+

1

q/+ p/1+ p/2
γµ2P+

1

q/+ p/1
γµ1P+

}
. (34)

Notice that, unlike equation (27), the exponential factor in front of each integral is the
same. This will turn out to be of the utmost importance. Next, let us use the equations
γµγνP+ = P+γµγν , P 2

+ = P+ and

(p/1+ p/2)γ5 = −q/γ5 − γ5(q/+ p/1+ p/2)

to cast the rhs of equation (34) into the form

−1

2
e∓ i

2 θ(p1,p2)

∫
d4q

(2π)4
e∓iθ(q,p2)

[
tr

{
γ5

1

q/+ p/1+ p/2
γµ1

1

q/+ p/2
γµ2

}

+ tr

{
1

q/
γ5γµ1

1

q/+ p/2
γµ2

}]

−1

2
e∓ i

2 θ(p1,p2)

∫
d4q

(2π)4
e∓iθ(q,p2)

[
tr

{
γ5

1

q/+ p/1+ p/2
γµ2

1

q/+ p/1
γµ1

}

+ tr

{
1

q/
γ5γµ2

1

q/+ p/1
γµ1

}]
.

(35)
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Recall that tr eps means that one only keeps contributions that carry the Levi-Civita symbol.
Taking into account equation (29), one obtains that equation (35) can be written as follows:

−1

2
e∓ i

2 θ(p1,p2)

∫
d4q

(2π)4
e∓iθ(q,p2)

[
− tr

{
1

q/+ p/2
γ5 γµ2

1

q/+ p/1+ p/2
γµ1

}

+ tr

{
1

q/
γ5γµ1

1

q/+ p/2
γµ2

}]

−1

2
e∓ i

2 θ(p1,p2)

∫
d4q

(2π)4
e∓iθ(q,p2)

[
− tr

{
1

q/+ p/1
γ5 γµ1

1

q/+ p/1+ p/2
γµ2

}

+ tr

{
1

q/
γ5γµ2

1

q/+ p/1
γµ1

}]
.

(36)

Let us next make the shifts q → q − p2 and q → q − p1 in the first and third integrals
in equation (36). Then, we readily see that the first integral cancels the fourth integral of
equation (36), but the sum of the second and third integrals of equation (36) yields

1

2

(
e± i

2 θ(p1,p2) − e∓ i
2 θ(p1,p2)

) ∫
d4q

(2π)4
e∓iθ(q,p2) tr

{
1

q/
γ5γµ1

1

q/+ p/2
γµ2

}
.

From this equation one obtains equation (33) for i = 2. Let us now replace the integral in
equation (33) with its value, which can be found in the appendix. One obtains, for i = 2, that

e∓ i
2 θ(p1,p2),(1)∓

µ1µ2
(p1, p2|p̃i) + e± i

2 θ(p1,p2),(2)∓
µ1µ2

(p1, p2|p̃i) = 1

2π2
sin

1

2
θ(p1, p2)

×εµ1µ2αβ

p̃α
i p

β

i

p̃2
i

∫ 1

0
dx

√
p̃2
i (−p2

i − i0+)x(1 − x)

×K1

(√
p̃2
i (−p2

i − i0+)x(1 − x)

)
(37)

a result which is also valid for i = 1. Let us warn the reader that we use the notation
p̃
µ

i = θµνpi ν and p̃2
i ≡ pi µ θ

µρηρσ θ
σν pi ν , so that p̃2

i � 0. Substituting this result in
equations (32), one comes to the conclusion that there is a pairwise cancellation mechanism
at work:
p
µ3
3 〈ja1 −

µ1
(p1) j

a2 +
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con + p
µ3
3 〈ja1 +

µ1
(p1) j

a2 −
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = 0

p
µ3
3 〈ja1 +

µ1
(p1) j

a2 −
µ2
(p2) j

a3 −
µ3
(p3)〉eps

con + p
µ3
3 〈ja1 −

µ1
(p1) j

a2 +
µ2
(p2) j

a3 +
µ3
(p3)〉eps

con = 0.
(38)

Finally, taking into account equations (23), (30), (31) and (38), one concludes that in the
pseudotensor part of �a1a2a3

µ1µ2µ3
(p1, p2, p3)NP no chiral gauge anomaly occurs, i.e.

p
µ3
3 �a1a2a3

µ1µ2µ3
(p1, p2, p3)

eps
NP = 0.

We have thus shown that a noncommutative U(N) chiral theory with only chiral adjoint
fermions does not present a chiral anomaly in the three-point function (triangle anomaly). The
descent equations [5] lead to the conclusion that noncommutative U(N) chiral gauge theory
with only adjoint fermions is anomaly free.

Let us now study the gauge anomalies of the theory with action in equation (12). If this
theory were gauge invariant at the quantum level the Ward identities should read thus:∫

d4x ω
i1
i2
� ∂µ

δ�[A,B]

δA
i1
µ i2

= i
∫

d4x ω
i1
i2
�

[
A

i2
µ i3

�
δ�[A,B]

δA
i1
µ i3

− δ�[A,B]

δA
i3
µ i2

� A
i3
µ i1

]

∫
d4x χ

j1
j2
� ∂µ

δ�[A,B]

δB
j1
µj2

= i
∫

d4x χ
j1
j2
�

[
B

j2
µj3

�
δ�[A,B]

δB
j1
µj3

− δ�[A,B]

δB
j3
µj2

� B
j3
µj1

]
.

(39)
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Let us introduce the following currents:

jaµ(x) ≡ i
δS[A,B]

Aa
µ(x)

and jbµ(x) ≡ i
δS[A,B]

Bb
µ(x)

.

Hence,

jaµ(x) = −iψj

k β � ψ̄k
i α(x) T

a i
U(N) j

(
γ̄ µP+

)
αβ

(40)

and

jbµ(x) = −i ψ̄k
i α � ψ

i
j β(x)T

b j

U(M) k

(
γ̄ µP+

)
αβ

(41)

where T a
U(N) and T b

U(M) are the generators of U(N) and U(M) in the fundamental
representation, respectively. We shall also need the nonsinglet currents

j
(A) i1
µ i2

(x) = −iψi1
j β � ψ̄

j

i2 α
(x)

(
γ̄ µP+

)
αβ

(42)

and

j
(B) j1
µ j2

(x) = −i ψ̄j1
i α � ψ

i
j2 β

(x)
(
γ̄ µP+

)
αβ

(43)

to express the rhs of equation (39) in terms of correlation functions of currents. Unlike the
theories previously studied, now there are nonvanishing pseudotensor contributions to the
two-point part of �[A,B]. These contributions enter the Ward identities in equation (39).

We have now the following independent three-current correlation functions:

〈ja1
µ1
(p1) j

a2
µ2
(p2) j

a3
µ3
(p3)〉con〈jb1

µ1
(p1) j

b2
µ2
(p2) j

b3
µ3
(p3)〉con

〈jb1
µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉con〈ja1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉con

〈ja1
µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉con and 〈jb1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉con.

(44)

The reader should bear in mind that the indices ai , i = 1, 2 and 3, label currents of the type
defined in equation (40), whereas if a current is of the type given in equation (41) it carries
an index bi , i = 1, 2 and 3. In equation (44) the first two correlation functions are sums of
only planar triangle diagrams and the last four are sums of only nonplanar triangle diagrams.
That there be no breaking of the classical gauge symmetry of the theory at hand in the triangle
diagrams demands that the following equations hold:

p
µ3
3 〈ja1

µ1
(p1) j

a2
µ2
(p2) j

a3
µ3
(p3)〉eps

con = 0

p
µ3
3 〈jb1

µ1
(p1) j

b2
µ2
(p2) j

b3
µ3
(p3)〉eps

con = 0

p
µ3
3 〈jb1

µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉eps

con = 0

p
µ3
3 〈ja1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉eps

con = 0

p
µ3
3 〈ja1

µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉eps

con

= − e
i
2 θ(p1,p2) T

a1 i1
i3
T

a3 i3
i2

〈j (A) i2µ1 i1
(−p2) j

b2
µ2
(p2) 〉eps

con

+e− i
2 θ(p1,p2)T

a3 i1
i3
T

a1 i3
i2

〈j (A) i2µ1 i1
(−p2) j

b2
µ2
(p2) 〉eps

con

p
µ3
3 〈jb1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉eps

con

= − e
i
2 θ(p1,p2) T

b1 j1
j3
T

b3 j3
j2

〈j (B) j2
µ1 j1

(−p2) j
a2
µ2
(p2) 〉eps

con

+e− i
2 θ(p1,p2)T

b3 j1
j3
T

b1 j3
j2

〈j (B) j2
µ1 j1

(−p2) j
a2
µ2
(p2) 〉eps

con

(45)

where p3 = −p1 − p2. The nonsinglet currents j (A)µ and j (B)
µ are defined in equations (42)

and (43), respectively. To obtain the previous equation, we have taken into account
equation (39) and the result that the only two-point contribution to �[A,B] which carries
a pseudotensor contribution is of the type∫

d4x

∫
d4y Tr Aµ1(x) Tr Bµ2(y) f

µ1µ2 (x, y|θ)
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with

f µ1µ2 (x, y|θ) =
∫

d4p

(2π)4
e−ip(x−y) f µ1µ2 (p|p̃)

f µ1µ2 (p|p̃) = i

4π2
εµ1µ2αβ

p̃αpβ

p̃2

×
∫ 1

0
dx

√
p̃2(−p2 − i0+)x(1 − x) K1

(√
p̃2(−p2 − i0+)x(1 − x)

)
.

This pseudotensor contribution is nonplanar and causes no anomaly.
Let us note that the first two identities in equation (45) do not hold, so they are anomalous,

but that all the others do. The computations we have carried out for the theory with adjoint
fermion fields can be readily adapted to the case at hand to obtain

p
µ3
3 〈ja1

µ1
(p1) j

a2
µ2
(p2) j

a3
µ3
(p3)〉eps

con = −(2π)4δ(p1 + p2 + p3)
1

24π2
εµ1µ2αβ p

α
1p

β

2

×M
(

Tr
{
T

a1
U(N), T

a2
U(N)

}
T

a3
U(N) cos 1

2θ(p1, p2)

−i Tr
[
T

a1
U(N), T

a2
U(N)

]
T

a3
U(N) sin 1

2θ(p1, p2)
)

p
µ3
3 〈jb1

µ1
(p1) j

b2
µ2
(p2) j

b3
µ3
(p3)〉eps

con = (2π)4δ(p1 + p2 + p3)
1

24π2
εµ1µ2αβ p

α
1p

β

2

×N
(

Tr
{
T

b1
U(M), T

b2
U(M)

}
T

b3
U(M) cos 1

2θ(p1, p2)

−i Tr
[
T

b1
U(M), T

b2
U(M)

]
T

b3
U(M) sin 1

2θ(p1, p2)
)

(46)

and

p
µ3
3 〈jb1

µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉eps

con

= − (2π)4δ(p1 + p2 + p3)Tr
(
T

b1
U(M)T

b2
U(M)

)
Tr T

a3
U(N)

×[
e− i

2 θ(p1,p2),(1)+
µ1µ2

(p1, p2|p̃3) + e
i
2 θ(p1,p2),(2)+

µ1µ2
(p1, p2|p̃3)

]
p
µ3
3 〈ja1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉eps

con

= (2π)4δ(p1 + p2 + p3)Tr
(
T

a1
U(N)T

a2
U(N)

)
Tr T

b3
U(M)

×[
e

i
2 θ(p1,p2),(1)−

µ1µ2
(p1, p2|p̃3) + e− i

2 θ(p1,p2),(2)−
µ1µ2

(p1, p2|p̃3)
]

p
µ3
3 〈ja1

µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉eps

con

= (2π)4δ(p1 + p2 + p3)Tr
(
T

a1
U(N)T

a3
U(N)

)
Tr T

b2
U(M)

×[
e− i

2 θ(p1,p2),(1)−
µ1µ2

(p1, p2|p̃2) + e
i
2 θ(p1,p2),(2)−

µ1µ2
(p1, p2|p̃2)

]
p
µ3
3 〈jb1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉eps

con

= − (2π)4δ(p1 + p2 + p3)Tr
(
T

b1
U(M)T

b3
U(M)

)
Tr T

a2
U(N)

×[
e

i
2 θ(p1,p2),(1)+

µ1µ2
(p1, p2|p̃2) + e− i

2 θ(p1,p2),(2)+
µ1µ2

(p1, p2|p̃2)
]
.

(47)

From equation (46), one deduces that the anomaly cancellation condition for the planar
triangle diagrams reads

Tr
(
T

a1
U(N)T

a2
U(N)T

a3
U(N)

) = 0 and Tr
(
T

b1
U(M)T

b2
U(M)T

b3
U(M)

) = 0.

Both the anomalies which give rise to these anomaly cancellation conditions are analogous to
the anomaly in equation (10), i.e. the anomaly for chiral fundamental fermions. If we now
substitute equation (37) in (47), we shall conclude that the left-hand sides of the last two
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identities in equation (45) do not vanish, but read, respectively, thus:

p
µ3
3 〈ja1

µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉eps

con

= (2π)4δ(p1 + p2 + p3)Tr
(
T

a1
U(N)T

a3
U(N)

)
Tr T

b2
U(M)

×
[

1

2π2
sin

1

2
θ(p1, p2) εµ1µ2αβ

p̃α
2p

β

2

p̃2
2

×
∫ 1

0
dx

√
p̃2

2(−p2
2 − i0+)x(1 − x) K1

(√
p̃2

2(−p2
2 − i0+)x(1 − x)

)]
p
µ3
3 〈jb1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉eps

con

= − (2π)4δ(p1 + p2 + p3)Tr
(
T

b1
U(M)T

b3
U(M)

)
Tr T

a2
U(N)

×
[

1

2π2
sin

1

2
θ(p1, p2) εµ1µ2αβ

p̃α
2p

β

2

p̃2
2

×
∫ 1

0
dx

√
p̃2

2(−p2
2 − i0+)x(1 − x) K1

(√
p̃2

2(−p2
2 − i0+)x(1 − x)

)]
.

(48)

Recall that p̃µ

2 = θµνp2 ν and p̃2
2 ≡ p2µ θ

µρηρσ θ
σν p2 ν , so p̃2

2 � 0.
Finally, equation (26) implies that

p
µ3
3 〈ja1

µ1
(p1) j

a2
µ2
(p2) j

b3
µ3
(p3)〉eps

con = 0.

Similarly,

p
µ3
3 〈jb1

µ1
(p1) j

b2
µ2
(p2) j

a3
µ3
(p3)〉eps

con = 0.

To show that indeed the last four identities in equation (45) hold, all that remains for us to do
is to work out the following expressions:

−e
i
2 θ(p1,p2) T

a1 i1
i3
T

a3 i3
i2

〈j (A) i2µ1 i1
(−p2) j

b2
µ2
(p2) 〉eps

con

+e− i
2 θ(p1,p2)T

a3 j1
j3
T

a1 j3
j2

〈j (A) j2
µ1 j1

(−p2) j
b2
µ2
(p2) 〉eps

con

−e
i
2 θ(p1,p2) T

b1 j1
j3
T

b3 j3
j2

〈j (B) j2
µ1 j1

(−p2) j
a2
µ2
(p2) 〉eps

con

+e− i
2 θ(p1,p2)T

b3 j1
j3
T

b1 j3
j2

〈j (B) j2
µ1 j1

(−p2) j
a2
µ2
(p2) 〉eps

con.

It is not difficult to see that the previous expressions are equal to

−i Tr
(
T

a1
U(N)T

a3
U(N)

)
Tr T

b2
U(M) sin

1

2
θ(p1, p2)

∫
dq4

(2π)2
e−iθ(q,p2)

tr{(q/+ p/2)γµ2q/γµ1γ5}
(q2 + i0+)((q + p2)2 + i0+)

−i Tr
(
T

b1
U(M)T

b3
U(M)

)
Tr T

a2
U(N) sin

1

2
θ(p1, p2)

∫
dq4

(2π)2
eiθ(q,p2)

tr{(q/+ p/2)γµ2q/γµ1γ5}
(q2 + i0+)((q + p2)2 + i0+)

respectively. Some algebra and the help of the appendix makes it possible for us to conclude
that the right-hand sides of the last two identities in equation (45) agree, respectively, with
their left-hand sides, the latter being given in equation (48).

In summary, we have shown that the last four identities of equation (45) indeed hold in the
quantum theory. These identities are the Ward identities for the nonplanar contributions to the
three-point function of �[A,B]: the Ward identities for the nonplanar triangle contributions.
Hence, the nonplanar triangle contributions give rise to no gauge anomaly. On the other hand,
the planar triangle contributions are anomalous with the anomalies given in equation (46).

3. The IR origin of non-Abelian chiral gauge anomalies

In the previous section we have shown that, for the theories we are discussing, only planar
triangle diagrams give rise to a gauge anomaly and we have given a UV interpretation of this
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anomaly. Equation (10) is the basic building-block for this type of anomaly: see equation (46).
To interpret the non-Abelian chiral anomaly under scrutiny as an IR phenomenon, we shall
follow Coleman and Grossman [7] and compute �a1a2a3

µ1µ2µ3
(p1, p2)

eps at the point

p2
1 = p2

2 = p2
3 = −Q2 p1 + p2 + p3 = 0.

�a1a2a3
µ1µ2µ3

(p1, p2)
eps is the pseudotensor part of the three-point function for a noncommutative

gauge theory with a right-handed fundamental fermion. The action of this theory is given in
equation (5). The corresponding IR analysis for the planar triangle diagrams arising in the
other theories studied in this paper (see equations (6), (7) and (12)) can be readily performed
by adapting the results presented in the following.

Let us recall first that formally �a1a2a3
µ1µ2µ3

(p1, p2)
eps is given by the sum of the pseudotensor

contributions from the triangle diagrams in figure 2, which for the case at hand reads

�a1a2a3
µ1µ2µ3

(p1, p2)
eps = e− i

2 θ(p1,p2) Tr T a1T a2T a3 ,(1)
µ1µ2µ3

(p1, p2)

+e
i
2 θ(p1,p2) Tr T a2T a1T a3 ,(2)

µ1µ2µ3
(p1, p2) (49)

where

,(1)
µ1µ2µ3

(p1, p2) =
∫

d4q

(2π)4

tr eps
{
(q/+ p/1) γµ1P+ q/γµ2P+ (q/− p/2) γµ3P+

}
(q2 + i0+)((q + p1)2 + i0+)((q − p2)2 + i0+)

and

,(2)
µ1µ2µ3

(p1, p2) =
∫

d4q

(2π)4

tr eps
{
(q/+ p/2) γµ2P+ q/γµ1P+ (q/− p/1) γµ3P+

}
(q2 + i0+)((q + p2)2 + i0+)((q − p1)2 + i0+)

.

The symbol tr eps denotes the pseudotensor contributions, i.e. contributions involving an odd
number of γ5 matrices.

As they stand the Feynman amplitudes ,(1)
µ1µ2µ3

(p1, p2) and ,(2)
µ1µ2µ3

(p1, p2) above are
at first sight formal expressions since they are sums of Feynman integrals UV divergent
by power-counting. However, we shall see in a moment that one can associate with these
Feynman amplitudes a unique tempered distribution provided cyclicity of the external indices
and momenta is imposed. Indeed, renormalization theory [14] associates with every formal
Feynman amplitude a tempered distribution which is uniquely defined up to a local polynomial
of the appropriate dimension in the external momenta1. This polynomial can be further
restricted by symmetries. Hence, the Feynman amplitude ,(1)

µ1µ2µ3
(p1, p2) can be uniquely

defined as a distribution modulo the following polynomial:

C1 εµ1µ2µ3α p
α
1 + C2 εµ1µ2µ3α p

α
2 (50)

whereC1 andC2 are arbitrary constants. If we next impose symmetry under cyclic permutations
of the pairs (µ1, p1), (µ2, p2), (µ3, p3), with p1 +p2 +p3 = 0, then C1 and C2 are fixed once
and for all. Indeed, any further addition ought to be of the type

C3 εµ1µ2µ3α (p1 + p2 + p3)
α

which vanishes upon imposing four-momentum conservation. Actually, what this discussion is
telling us is that if we use, as an intermediate computational procedure, a regularization method
that explicitly preserves the formal symmetry of ,(1)

µ1µ2µ3
(p1, p2) under cyclic permutations

of the pairs (µ1, p1), (µ2, p2), (µ3, p3), the limit in which the regulator is removed is well
defined. Besides, this limit is the same for all regularizations (and, of course, renormalizations)
of ,(1)

µ1µ2µ3
(p1, p2) which preserve its formal cyclic symmetry. Of course, any renormalization

1 Here we assume that, since the diagrams we are considering are one loop and planar, standard renormalization
theory can be applied to each diagram without further ado.
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which breaks this cyclic symmetry can be brought to the unique symmetric form just mentioned
by adding a finite counterterm of the form given in equation (50). It is in this sense that we are
entitled to say that the Feynman amplitude ,(1)

µ1µ2µ3
(p1, p2) is a UV finite quantity, in spite of

the fact that it is not UV finite by power-counting. The same kind of argument can be applied
to ,(2)

µ1µ2µ3
(p1, p2) to conclude that it is also a UV finite object, though it is not UV finite by

power-counting.
There is a very handy regularization procedure which explicitly preserves the symmetry

of each triangle diagram in figure 2 under cyclic permutations of its external legs. This is
the dimensional regularization algorithm set up in the previous section. The dimensionally
regularized counterparts of ,(1)

µ1µ2µ3
(p1, p2) and ,(2)

µ1µ2µ3
(p1, p2) read

,(1)
µ1µ2µ3

(p1, p2; d) =
∫

ddq

(2π)d
tr eps

{
(q/+ p/1) γ̄µ1P+ q/γ̄µ2P+ (q/− p/2) γ̄µ3P+

}
(q2 + i0+)((q + p1)2 + i0+)((q − p2)2 + i0+)

and

,(2)
µ1µ2µ3

(p1, p2; d) =
∫

ddq

(2π)d
tr eps

{
(q/+ p/2) γ̄µ2P+ q/γ̄µ1P+ (q/− p/1) γ̄µ3P+

}
(q2 + i0+)((q + p2)2 + i0+)((q − p1)2 + i0+)

.

(51)

Taking into account that

P+γ̂µγ̄νP+ = 0 P+γ̄µγ̄ν = γ̄µγ̄νP+

we conclude that equation (51) can be turned into the following one:

,(1)
µ1µ2µ3

(p1, p2; d) = 1

2

∫
ddq

(2π)d
tr

{
(q̄/+ p̄/1) γ̄µ1 q̄/γ̄µ2 (q̄/− p̄/2) γ̄µ3γ5

}
(q2 + i0+)((q + p1)2 + i0+)((q − p2)2 + i0+)

and

,(2)
µ1µ2µ3

(p1, p2; d) = 1

2

∫
ddq

(2π)d
tr

{
(q̄/+ p̄/2) γ̄µ2 q̄/γ̄µ1 (q̄/− p̄/1) γ̄µ3γ5

}
(q2 + i0+)((q + p2)2 + i0+)((q − p1)2 + i0+)

.

(52)

The computation of the previous integrals at p2
1 = p2

2 = p2
3 = −Q2 is very easy. The

substitution in equation (52) of the integrals in the appendix and some self-evident algebraic
arrangements yield upon taking the limit d → 4 the following result:

,(1)
µ1µ2µ3

(p1, p2) = ,(2)
µ1µ2µ3

(p1, p2)

= 1

24π2

(
1

Q2

) (
εµ1µ2αβ p

α
1p

β

2 p3µ3 + εµ3µ1αβ p
α
3p

β

1 p2µ2 + εµ2µ3αβ p
α
2p

β

3 p1µ1

)
.

(53)

The Feynman amplitudes in the previous equation have poles at Q2 = 0 and it is these
IR singularities which we shall hold responsible for the existence of the non-Abelian chiral
anomaly [7]. If we now substitute equations (53) into (49) we shall obtain the whole anomalous
contribution to the three-point function at p2

1 = p2
2 = p2

3 = −Q2:

�a1a2a3
µ1µ2µ3

(p1, p2)
eps

= 1

24π2

(
1

Q2

) (
Tr {T a1 , T a2} T a3 cos 1

2θ(p1, p2)

−i Tr [T a1 , T a2 ]T a3 sin 1
2θ(p1, p2)

)
×(

εµ1µ2αβ p
α
1p

β

2 p3µ3 + εµ3µ1αβ p
α
3p

β

1 p2µ2 + εµ2µ3αβ p
α
2p

β

3 p1µ1

)
. (54)

Notice that by contracting with p
µ3
3 both sides of the previous equation, one obtains once again

the anomaly equation (equation (10)). Also notice that unlike in the commutative case the rhs
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of equation (54) vanishes if and only if Tr {T a1 , T a2} T a3 = 0 and Tr [T a1 , T a2 ]T a3 = 0, i.e.
Tr T a1T a2T a3 = 0. Indeed, the nonpolynomial—in the Moyal product—IR contributions,

cos 1
2θ(p1, p2)

Q2
and

sin 1
2θ(p1, p2)

Q2

in this equation make it impossible for us to redefine �a1a2a3
µ1µ2µ3

(p1, p2)
eps, so the anomaly

cancellation condition reads merely Tr {T a1 , T a2} T a3 = 0.

4. Summary and conclusions

In this paper we have shown that the one-loop noncommutative non-Abelian gauge anomalies
for U(N) groups can be interpreted either as a UV effect or as an IR phenomenon. We have
considered three basic types of noncommutative chiral gauge theory, namely, gauge theories
with a fundamental, gauge theories with an adjoint and gauge theories with a bi-fundamental
right-handed fermion. We have computed the anomaly in one-loop planar triangle diagrams
and shown that the nonplanar contributions yield no gauge anomaly since they preserve the
corresponding Ward identities. It turned out that chiral gauge theories with fundamental, anti-
fundamental and bi-fundamental matter are, in general, anomalous and that chiral theories
with only adjoint fermions are always anomaly free. Last but not least, we have clarified the
origin of the noncommutative anomaly cancellation condition Tr T a1T a2T a3 = 0.

It will be interesting to carry out the analysis presented here for the theories introduced
in [15] and for the axial anomaly [16]. Anomalies in the presence of noncommutative
gravity [17] are also worth studying. We shall report on these topics elsewhere.
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Appendix

The following result is needed to obtain equation (37):∫
d4q

(2π)4
e±iθ(q,p) qµ

(q2 + i0+)((q + p)2 + i0+)

= − ipµ

8π2

∫ 1

0
dx x K0

(√
p̃2(−p2 − i0+)x(1 − x)

)

± 1

8π2

p̃µ

p̃2

∫ 1

0
dx

√
p̃2(−p2 − i0+)x(1 − x)

×K1

(√
p̃2(−p2 − i0+)x(1 − x)

)
where p̃µ = θµνpν , but p̃2 ≡ pµ θ

µρηρσ θ
σν pν , so that p̃2

i � 0.
Next, we display the integrals needed to obtain equation (53). These integrals are worked

out at the point p2
1 = p2

2 = −2p1 · p2 = −Q2. They read
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ddq

(2π)d
1

q2 (q + p1)2 (q − p2)2
= 3

Q2
+ O(d − 4)∫

ddq

(2π)d
q̄µ

q2 (q + p1)2 (q − p2)2
=

(
3

3

) (
1

Q2

)
(p̄2 − p̄1)µ + O(d − 4)

∫
ddq

(2π)d
q̄µq̄ν

q2 (q + p1)2 (q − p2)2
=

(
I1

4
+
3

6
+
I2

4

)
ḡµν +

I2

6

(
1

Q2

) (
p̄1µp̄2 ν + p̄2µp̄1 ν

)
+

(
3

3
+
I2

3

) (
1

Q2

) (
p̄1µp̄1 ν + p̄2µp̄2 ν

)
+ O(d − 4)

∫
ddq

(2π)d
q̄2 q̄µ

q2 (q + p1)2 (q − p2)2
=

(
I1

2
+
I2

6

)
(p̄2 − p̄1)µ + O(d − 4)

where

I1 = i

16π2

(
−1

ε
− γ − ln

Q2

4πκ2
+ 2

)

I2 = i

16π2

3 = i

16π2

∫ 1

0
dx

ln x(1 − x)

1 − x + x2

and d = 4 + 2ε.
Note that all the ugly features of the integrals above nicely cancel against one another

when substituted in equation (52) to yield the beautiful result of equation (53).
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